The Session Management General Guidelines previously available on this OWASP Authentication Cheat Sheet have been integrated into the Session Management Cheat Sheet. Password Managers Password managers are programs, browser plugins or web services that automate management of large number of different credentials, including memorizing. The OWASP Cheat Sheet Series was created to provide a concise collection of high value information on specific application security topics. A REST API resource is. OWASP API Security Top 10 cheat sheet; Audit issues for the OpenAPI Specification v2; Audit issues for the OpenAPI Specification v3; Share this article: OWASP API Security Top 10 cheat sheet. Download OWASP API Security Top 10 infographic as a cheat sheet PDF, print it out, and put it on your wall! Cheat Sheet: Addressing OWASP Top 10 Vulnerabilities in MuleSoft APIs If you're a MuleSoft API developer, you need to check out this list of vulnerabilities and remediations to ensure what you.
Last revision (mm/dd/yy): 09/4/2018
- 8Validate content types
- 12Security headers
REST (or REpresentational State Transfer) is an architectural style first described in Roy Fielding's Ph.D. dissertation on Architectural Styles and the Design of Network-based Software Architectures. It evolved as Fielding wrote the HTTP/1.1 and URI specs and has been proven to be well-suited for developing distributed hypermedia applications. While REST is more widely applicable, it is most commonly used within the context of communicating with services via HTTP.
The key abstraction of information in REST is a resource. A REST API resource is identified by a URI, usually a HTTP URL. REST components use connectors to perform actions on a resource by using a representation to capture the current or intended state of the resource and transferring that representation. The primary connector types are client and server, secondary connectors include cache, resolver and tunnel. In order to implement flows with REST APIs, resources are typically created, read, updated and deleted. For example, an ecommerce site may offer methods to create an empty shopping cart, to add items to the cart and to check out the cart.
Another key feature of REST applications is the use of standard HTTP verbs and error codes in the pursuit or removing unnecessary variation among different services.
Another key feature of REST applications is the use of HATEOS or Hypermedia as the Engine of Application State. This provides REST applications a self-documenting nature making it easier for developers to interact with a REST service without a priori knowledge.
Secure REST services must only provide HTTPS endpoints. This protects authentication credentials in transit, for example passwords, API keys or JSON Web Tokens. It also allows clients to authenticate the service and guarantees integrity of the transmitted data.
See the Transport Layer Protection Cheat Sheet for additional information.
Consider the use of mutually authenticated client-side certificates to provide additional protection for highly privileged web services.
Non-public REST services must perform access control at each API endpoint. Web services in monolithic applications implement this by means of user authentication, authorisation logic and session management. This has several drawbacks for modern architectures which compose multiple micro services following the RESTful style.
- in order to minimise latency and reduce coupling between services, the access control decision should be taken locally by REST endpoints
- user authentication should be centralised in a Identity Provider (IdP), which issues access tokens
There seems to be a convergence towards using JSON Web Tokens (JWT) as the format for security tokens. JWTs are JSON data structures containing a set of claims that can be used for access control decisions. A cryptographic signature or message authentication code (MAC) can be used to protect the integrity of the JWT.
- Ensure JWTs are integrity protected by either a signature or a MAC. Do not allow the unsecured JWTs: {'alg':'none'}. See https://tools.ietf.org/html/rfc7519#section-6.1
- In general, signatures should be preferred over MACs for integrity protection of JWTs.
If MACs are used for integrity protection, every service that is able to validate JWTs can also create new JWTs using the same key. This means that all services using the same key have to mutually trust each other. Another consequence of this is that a compromise of any service also compromises all other services sharing the same key. See https://tools.ietf.org/html/rfc7515#section-10.5 for additional information.
The relying party or token consumer validates a JWT by verifying its integrity and claims contained.
- A relying party must verify the integrity of the JWT based on its own configuration or hard-coded logic. It must not rely on the information of the JWT header to select the verification algorithm. See https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html and https://www.youtube.com/watch?v=bW5pS4e_MX8
Some claims have been standardised and should be present in JWT used for access controls. At least the following of the standard claims should be verified:
- 'iss' or issuer - is this a trusted issuer? Is it the expected owner of the signing key?
- 'aud' or audience - is the relying party in the target audience for this JWT?
- 'exp' or expiration time - is the current time before the end of the validity period of this token?
- 'nbf' or not before time - is the current time after the start of the validity period of this token?
Public REST services without access control run the risk of being farmed leading to excessive bills for bandwidth or compute cycles. API keys can be used to mitigate this risk. They are also often used by organisation to monetize APIs; instead of blocking high-frequency calls, clients are given access in accordance to a purchased access plan.
API keys can reduce the impact of denial-of-service attacks. However, when they are issued to third-party clients, they are relatively easy to compromise.
- Require API keys for every request to the protected endpoint.
- Return 429 'Too Many Requests' HTTP response code if requests are coming in too quickly.
- Revoke the API key if the client violates the usage agreement.
- Do not rely exclusively on API keys to protect sensitive, critical or high-value resources.
- Apply a whitelist of permitted HTTP Methods e.g. GET, POST, PUT
- Reject all requests not matching the whitelist with HTTP response code 405 Method not allowed
- Make sure the caller is authorised to use the incoming HTTP method on the resource collection, action, and record
In Java EE in particular, this can be difficult to implement properly. See Bypassing Web Authentication and Authorization with HTTP Verb Tampering for an explanation of this common misconfiguration.
- Do not trust input parameters/objects
- Validate input: length / range / format and type
- Achieve an implicit input validation by using strong types like numbers, booleans, dates, times or fixed data ranges in API parameters
- Constrain string inputs with regexps
- Reject unexpected/illegal content
- Make use of validation/sanitation libraries or frameworks in your specific language
- Define an appropriate request size limit and reject requests exceeding the limit with HTTP response status 413 Request Entity Too Large
- Consider logging input validation failures. Assume that someone who is performing hundreds of failed input validations per second is up to no good.
- Have a look at input validation cheat sheet for comprehensive explanation
- Use a secure parser for parsing the incoming messages. If you are using XML, make sure to use a parser that is not vulnerable to XXE and similar attacks.
A REST request or response body should match the intended content type in the header. Otherwise this could cause misinterpretation at the consumer/producer side and lead to code injection/execution.
- Document all supported content types in your API
Validate request content types
- Reject requests containing unexpected or missing content type headers with HTTP response status 406 Unacceptable or 415 Unsupported Media Type
- For XML content types ensure appropriate XML parser hardening, see the cheat sheet
- Avoid accidentally exposing unintended content types by explicitly defining content types e.g. Jersey (Java) @consumes('application/json'); @produces('application/json'). This avoids XXE-attack vectors for example.
Send safe response content types
It is common for REST services to allow multiple response types (e.g. 'application/xml' or 'application/json', and the client specifies the preferred order of response types by the Accept header in the request.
- Do NOT simply copy the Accept header to the Content-type header of the response.
- Reject the request (ideally with a 406 Not Acceptable response) if the Accept header does not specifically contain one of the allowable types.
Services including script code (e.g. JavaScript) in their responses must be especially careful to defend against header injection attack.
- ensure sending intended content type headers in your response matching your body content e.g. 'application/json' and not 'application/javascript'
- Avoid exposing management endpoints via Internet.
- If management endpoints must be accessible via the Internet, make sure that users must use a strong authentication mechanism, e.g. multi-factor.
- Expose management endpoints via different HTTP ports or hosts preferably on a different NIC and restricted subnet.
- Restrict access to these endpoints by firewall rules or use of access control lists.
- Respond with generic error messages - avoid revealing details of the failure unnecessarily
- Do not pass technical details (e.g. call stacks or other internal hints) to the client
- Write audit logs before and after security related events
- Consider logging token validation errors in order to detect attacks
- Take care of log injection attacks by sanitising log data beforehand
To make sure the content of a given resources is interpreted correctly by the browser, the server should always send the Content-Type header with the correct Content-Type, and preferably the Content-Type header should include a charset. The server should also send an X-Content-Type-Options: nosniff to make sure the browser does not try to detect a different Content-Type than what is actually sent (can lead to XSS).
Additionally the client should send an X-Frame-Options: deny to protect against drag'n drop clickjacking attacks in older browsers.
CORS
Cross-Origin Resource Sharing (CORS) is a W3C standard to flexibly specify what cross-domain requests are permitted. By delivering appropriate CORS Headers your REST API signals to the browser which domains, AKA origins, are allowed to make JavaScript calls to the REST service.
- Disable CORS headers if cross-domain calls are not supported
- Be as specific as possible and as general as necessary when setting the origins of cross-domain calls
Consider the use of mutually authenticated client-side certificates to provide additional protection for highly privileged web services.
Non-public REST services must perform access control at each API endpoint. Web services in monolithic applications implement this by means of user authentication, authorisation logic and session management. This has several drawbacks for modern architectures which compose multiple micro services following the RESTful style.
- in order to minimise latency and reduce coupling between services, the access control decision should be taken locally by REST endpoints
- user authentication should be centralised in a Identity Provider (IdP), which issues access tokens
There seems to be a convergence towards using JSON Web Tokens (JWT) as the format for security tokens. JWTs are JSON data structures containing a set of claims that can be used for access control decisions. A cryptographic signature or message authentication code (MAC) can be used to protect the integrity of the JWT.
- Ensure JWTs are integrity protected by either a signature or a MAC. Do not allow the unsecured JWTs: {'alg':'none'}. See https://tools.ietf.org/html/rfc7519#section-6.1
- In general, signatures should be preferred over MACs for integrity protection of JWTs.
If MACs are used for integrity protection, every service that is able to validate JWTs can also create new JWTs using the same key. This means that all services using the same key have to mutually trust each other. Another consequence of this is that a compromise of any service also compromises all other services sharing the same key. See https://tools.ietf.org/html/rfc7515#section-10.5 for additional information.
The relying party or token consumer validates a JWT by verifying its integrity and claims contained.
- A relying party must verify the integrity of the JWT based on its own configuration or hard-coded logic. It must not rely on the information of the JWT header to select the verification algorithm. See https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html and https://www.youtube.com/watch?v=bW5pS4e_MX8
Some claims have been standardised and should be present in JWT used for access controls. At least the following of the standard claims should be verified:
- 'iss' or issuer - is this a trusted issuer? Is it the expected owner of the signing key?
- 'aud' or audience - is the relying party in the target audience for this JWT?
- 'exp' or expiration time - is the current time before the end of the validity period of this token?
- 'nbf' or not before time - is the current time after the start of the validity period of this token?
Public REST services without access control run the risk of being farmed leading to excessive bills for bandwidth or compute cycles. API keys can be used to mitigate this risk. They are also often used by organisation to monetize APIs; instead of blocking high-frequency calls, clients are given access in accordance to a purchased access plan.
API keys can reduce the impact of denial-of-service attacks. However, when they are issued to third-party clients, they are relatively easy to compromise.
- Require API keys for every request to the protected endpoint.
- Return 429 'Too Many Requests' HTTP response code if requests are coming in too quickly.
- Revoke the API key if the client violates the usage agreement.
- Do not rely exclusively on API keys to protect sensitive, critical or high-value resources.
- Apply a whitelist of permitted HTTP Methods e.g. GET, POST, PUT
- Reject all requests not matching the whitelist with HTTP response code 405 Method not allowed
- Make sure the caller is authorised to use the incoming HTTP method on the resource collection, action, and record
In Java EE in particular, this can be difficult to implement properly. See Bypassing Web Authentication and Authorization with HTTP Verb Tampering for an explanation of this common misconfiguration.
- Do not trust input parameters/objects
- Validate input: length / range / format and type
- Achieve an implicit input validation by using strong types like numbers, booleans, dates, times or fixed data ranges in API parameters
- Constrain string inputs with regexps
- Reject unexpected/illegal content
- Make use of validation/sanitation libraries or frameworks in your specific language
- Define an appropriate request size limit and reject requests exceeding the limit with HTTP response status 413 Request Entity Too Large
- Consider logging input validation failures. Assume that someone who is performing hundreds of failed input validations per second is up to no good.
- Have a look at input validation cheat sheet for comprehensive explanation
- Use a secure parser for parsing the incoming messages. If you are using XML, make sure to use a parser that is not vulnerable to XXE and similar attacks.
A REST request or response body should match the intended content type in the header. Otherwise this could cause misinterpretation at the consumer/producer side and lead to code injection/execution.
- Document all supported content types in your API
Validate request content types
- Reject requests containing unexpected or missing content type headers with HTTP response status 406 Unacceptable or 415 Unsupported Media Type
- For XML content types ensure appropriate XML parser hardening, see the cheat sheet
- Avoid accidentally exposing unintended content types by explicitly defining content types e.g. Jersey (Java) @consumes('application/json'); @produces('application/json'). This avoids XXE-attack vectors for example.
Send safe response content types
It is common for REST services to allow multiple response types (e.g. 'application/xml' or 'application/json', and the client specifies the preferred order of response types by the Accept header in the request.
- Do NOT simply copy the Accept header to the Content-type header of the response.
- Reject the request (ideally with a 406 Not Acceptable response) if the Accept header does not specifically contain one of the allowable types.
Services including script code (e.g. JavaScript) in their responses must be especially careful to defend against header injection attack.
- ensure sending intended content type headers in your response matching your body content e.g. 'application/json' and not 'application/javascript'
- Avoid exposing management endpoints via Internet.
- If management endpoints must be accessible via the Internet, make sure that users must use a strong authentication mechanism, e.g. multi-factor.
- Expose management endpoints via different HTTP ports or hosts preferably on a different NIC and restricted subnet.
- Restrict access to these endpoints by firewall rules or use of access control lists.
- Respond with generic error messages - avoid revealing details of the failure unnecessarily
- Do not pass technical details (e.g. call stacks or other internal hints) to the client
- Write audit logs before and after security related events
- Consider logging token validation errors in order to detect attacks
- Take care of log injection attacks by sanitising log data beforehand
To make sure the content of a given resources is interpreted correctly by the browser, the server should always send the Content-Type header with the correct Content-Type, and preferably the Content-Type header should include a charset. The server should also send an X-Content-Type-Options: nosniff to make sure the browser does not try to detect a different Content-Type than what is actually sent (can lead to XSS).
Additionally the client should send an X-Frame-Options: deny to protect against drag'n drop clickjacking attacks in older browsers.
CORS
Cross-Origin Resource Sharing (CORS) is a W3C standard to flexibly specify what cross-domain requests are permitted. By delivering appropriate CORS Headers your REST API signals to the browser which domains, AKA origins, are allowed to make JavaScript calls to the REST service.
- Disable CORS headers if cross-domain calls are not supported
- Be as specific as possible and as general as necessary when setting the origins of cross-domain calls
endpoints.cors.allowed-origins=https://example.com
endpoints.cors.allowed-methods=GET,POST
RESTful web services should be careful to prevent leaking credentials. Passwords, security tokens, and API keys should not appear in the URL, as this can be captured in web server logs, which makes them intrinsically valuable.
- In POST/PUT requests sensitive data should be transferred in the request body or request headers
- In GET requests sensitive data should be transferred in an HTTP Header
OK:
- https://example.com/resourceCollection//action
- https://twitter.com/vanderaj/lists
NOT OK:
- https://example.com/controller//action?apiKey=a53f435643de32 (API Key in URL)
HTTP defines status codes [1].When designing REST API, don't just use 200 for success or 404 for error. Always use the semantically appropriate status code for the response.
Here is a non-exhaustive selection of security related REST API status codes. Use it to ensure you return the correct code.
Status code | Message | Description |
---|---|---|
200 | OK | Response to a successful REST API action. The HTTP method can be GET, POST, PUT, PATCH or DELETE |
201 | Created | The request has been fulfilled and resource created. A URI for the created resource is returned in the Location header |
202 | Accepted | The request has been accepted for processing, but processing is not yet complete |
400 | Bad Request | The request is malformed, such as message body format error |
401 | Unauthorized | Wrong or no authentication ID/password provided |
403 | Forbidden | It's used when the authentication succeeded but authenticated user doesn't have permission to the request resource |
404 | Not Found | When a non-existent resource is requested |
406 | Unacceptable | The client presented a content type in the Accept header which is not supported by the server API |
405 | Method Not Allowed | The error for an unexpected HTTP method. For example, the REST API is expecting HTTP GET, but HTTP PUT is used |
413 | Payload too large | Use it to signal that the request size exceeded the given limit e.g. regarding file uploads |
415 | Unsupported Media Type | The requested content type is not supported by the REST service |
429 | Too Many Requests | The error is used when there may be DOS attack detected or the request is rejected due to rate limiting |
500 | Internal Server Error | An unexpected condition prevented the server from fulfilling the request. Be aware that the response should not reveal internal information that helps an attacker, e.g. detailed error messages or stack traces. |
501 | Not Implemented | The REST service does not implement the requested operation yet |
503 | Service Unavailable | The REST service is temporarily unable to process the request. Used to inform the client it should retry at a later time. |
Owasp Sql Cheat Sheet
Erlend Oftedal - erlend.oftedal@owasp.org
Andrew van der Stock - vanderaj@owasp.org
Tony Hsu Hsiang Chih- Hsiang_chihi@yahoo.com
Johan Peeters - yo@johanpeeters.com
Jan Wolff - jan.wolff@owasp.org
Rocco Gränitz - rocco.graenitz@owasp.org